Computer simulation of the ionic atmosphere around Z-DNA.

نویسندگان

  • J L F Abascal
  • M Domercq
  • J C Gil Montoro
چکیده

We describe a coarse-grained model for Z-DNA that mimics the DNA shape with a relatively small number of repulsive interaction sites. In addition, negative charges are placed at the phosphate positions. The ionic atmosphere around this grooved Z-DNA model is then investigated with Monte Carlo simulation. Cylindrically averaged concentration profiles as well as the spatial distribution of ions have been calculated. The results are compared to those for other DNA models differing in the repulsive core. This allows the examination of the effect of the DNA shape in the ionic distribution. It is seen that the penetrability of the ions to the DNA groove plays an important role in the ionic distribution. The results are also compared with those reported for B-DNA. In both conformers the ions are structured in alternating layers of positive and negative charge. In Z-DNA the layers are more or less concentric to the molecular axis. Besides, no coions enter into the single groove of this conformer. On the contrary, the alternating layers of B-DNA are also structured along the axial coordinate with some coions penetrating into the major groove. In both cases we have found five preferred locations of the counterions and two for the coions. The concentration of counterions reaches its absolute maximum at the narrow Z-DNA groove and at the minor groove of B-DNA, the value of the maximum being higher in the Z conformer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study

The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution aroun...

متن کامل

Ion counting from explicit-solvent simulations and 3D-RISM.

The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) ...

متن کامل

Molecular Simulations of DNA Counterion Distributions

One of the remarkable physical properties of a DNA molecule is that it is a strongly charged polyelectrolyte. In solution, DNA dissociates, forming a negatively charged polyion surrounded by an atmosphere of mobile, positively charged counterions. Although positive counterions are attracted to DNA, they screen the negative charge of DNA, decreasing the attractive force for other positive counte...

متن کامل

Simulation of Dispersion of Polluted Gases in Atmosphere

A computer program was developed to predict the dispersion of gas pollutant in the atmosphere. This program relies on puff method, and in order to consider the wind shear effects, the program has the ability to consider the complete dynamic and unsteady atmospheric conditions. Plume rise of hot pollutants due to buoyancy effects was also considered. The program has the capacity to perform the r...

متن کامل

Simulation of Dispersion of Polluted Gases in Atmosphere

A computer program was developed to predict the dispersion of gas pollutant in the atmosphere. This program relies on puff method, and in order to consider the wind shear effects, the program has the ability to consider the complete dynamic and unsteady atmospheric conditions. Plume rise of hot pollutants due to buoyancy effects was also considered. The program has the capacity to perform the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 49  شماره 

صفحات  -

تاریخ انتشار 2006